统计学常用的数据分析方法总结

本文介绍 16 种统计数据分析方法,这些方法不仅可以用于统计数据的分析,对其他类型的数据分析也有相当的借鉴可参考意义,文章分享来源:知乎 作者:阿平。

attachments-2019-11-v7d38n2M5dbf6faf26230.jpeg 文字内容比较多,首先来张大图放松一下心情,现在开始文字部分。

1. 描述统计

描述统计是通过图表或数学方法,对数据资料进行整理、分析,并对数据的分布状态、数字特征和随机变量之间关系进行估计和描述的方法。描述统计分为集中趋势分析和离中趋势分析和相关分析三大部分。

  • 集中趋势分析

集中趋势分析主要靠平均数、中数、众数等统计指标来表示数据的集中趋势。例如被试的平均成绩多少?是正偏分布还是负偏分布?

  • 离中趋势分析

离中趋势分析主要靠全距、四分差、平均差、方差(协方差:用来度量两个随机变量关系的统计量)、标准差等统计指标来研究数据的离中趋势。例如,我们想知道两个教学班的语文成绩中,哪个班级内的成绩分布更分散,就可以用两个班级的四分差或百分点来比较。

  • 相关分析

相关分析探讨数据之间是否具有统计学上的关联性。这种关系既包括两个数据之间的单一相关关系——如年龄与个人领域空间之间的关系,也包括多个数据之间的多重相关关系——如年龄、抑郁症发生率、个人领域空间之间的关系;既包括 A 大 B 就大(小),A 小 B 就小(大)的直线相关关系,也可以是复杂相关关系(A=Y-B*X);既可以是 A、B 变量同时增大这种正相关关系,也可以是 A 变量增大时 B 变量减小这种负相关,还包括两变量共同变化的紧密程度——即相关系数。

实际上,相关关系唯一不研究的数据关系,就是数据协同变化的内在根据——即因果关系。获得相关系数有什么用呢?简而言之,有了相关系数,就可以根据回归方程,进行 A 变量到 B 变量的估算,这就是所谓的回归分析,因此,相关分析是一种完整的统计研究方法,它贯穿于提出假设,数据研究,数据分析,数据研究的始终。

例如,我们想知道对监狱情景进行什么改造,可以降低囚徒的暴力倾向。我们就需要将不同的囚舍颜色基调、囚舍绿化程度、囚室人口密度、放风时间、探视时间进行排列组合,然后让每个囚室一种实验处理,然后用因素分析法找出与囚徒暴力倾向的相关系数最高的因素。假定这一因素为囚室人口密度,我们又要将被试随机分入不同人口密度的十几个囚室中生活,继而得到人口密度和暴力倾向两组变量(即我们讨论过的 A、B 两列变量)。然后,我们将人口密度排入 X 轴,将暴力倾向分排入 Y 轴,获得了一个很有价值的图表,当某典狱长想知道,某囚舍扩建到 N 人 / 间囚室,暴力倾向能降低多少。我们可以当前人口密度和改建后人口密度带入相应的回归方程,算出扩建前的预期暴力倾向和扩建后的预期暴力倾向,两数据之差即典狱长想知道的结果。

  • 推论统计

推论统计是统计学乃至于心理统计学中较为年轻的一部分内容。它以统计结果为依据,来证明或推翻某个命题。具体来说,就是通过分析样本与样本分布的差异,来估算样本与总体、同一样本的前后测成绩差异,样本与样本的成绩差距、总体与总体的成绩差距是否具有显著性差异。例如,我们想研究教育背景是否会影响人的智力测验成绩。可以找 100 名 24 岁大学毕业生和 100 名 24 岁初中毕业生。采集他们的一些智力测验成绩。用推论统计方法进行数据处理,最后会得出类似这样儿的结论:“研究发现,大学毕业生组的成绩显著高于初中毕业生组的成绩,二者在 0.01 水平上具有显著性差异,说明大学毕业生的一些智力测验成绩优于中学毕业生组。”

  • 正态性检验

很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。

常用方法:非参数检验的 K - 量检验、P- P 图、Q- Q 图、W 检验、动差法。

2. 假设检验

  • 参数检验

参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U 验:使用条件:当样本含量 n 较大时,样本值符合正态分布 2)T 检验:使用条件:当样本含量 n 较小时,样本值符合正态分布 A 单样本 t 检验:推断该样本来自的总体均数 μ 与已知的某一总体均数 μ0 (常为理论值或标准值)有无差别;B 配对样本 t 检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;

C 两独立样本 t 检验:无法找到在各方面极为相似的两样本作配对比较时使用。

  • 非参数检验

非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如 10 以下;

主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K- 量检验等。

3. 信度分析

信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:重测信度法、复本信度法、折半信度法、α 信度系数法。

  • 方法 1

重测信度法编辑:这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。

  • 方法 2

复本信度法编辑:让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。

  • 方法 3

折半信度法编辑:折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。在问卷调查中,态度测量最常见的形式是 5 级李克特(Likert)量表(李克特量表(Likert scale) 是属评分加总式量表最常用的一种,属同一构念的这些项目是用加总方式来计分,单独或个别项目是无意义的。它是由美国社会心理学家李克特于 1932 年在原有的总加量表基础上改进而成的。该量表由一组陈述组成,每一陈述有 "非常同意"、"同意"、"不一定"、"不同意"、"非常不同意" 五种回答,分别记为 5、4、3、2、1,每个被调查者的态度总分就是他对各道题的回答所得分数的加总,这一总分可说明他的态度强弱或他在这一量表上的不同状态。)。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼 - 布朗(Spearman-Brown)公式:求出整个量表的信度系数(ru)。

  • 方法 4

α 信度系数法:α 信度系数是目前最常用的信度系数,其公式为:α=(k/(k-1))*(1-(∑Si^2)/ST^2) 其中,K 为量表中题项的总数,Si^2 为第 i 题得分的题内方差,ST^2 为全部题项总得分的方差。从公式中可以看出,α 系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。

总量表的信度系数最好在 0.8 以上,0.7-0.8 之间可以接受;分量表的信度系数最好在 0.7 以上,0.6-0.7 还可以接受。Cronbach 's Alpha 系数如果在 0.6 以下就要考虑重新编问卷。用于检査测量的可信度,例如调查问卷的真实性。

  • 分类 1

外在信度:不同时间测量时量表的一致性程度,常用方法重测信度

  • 分类 2

内在信度:每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

4. 列联表分析

列联表是观测数据按两个或更多属性(定性变量)分类时所列出的频数表。

  • 简介

若总体中的个体可按两个属性 A、B 分类,A 有 r 个等级 A1,A2,……,Ar,B 有 c 个等级 B1,B2,……,Bc, 从总体中抽取大小为 n 的样本,设其中有 nij 个个体的属性属于等级 AI 和 Bj,nij 称为频数,将 r×c 个 nij 排列为一个 r 行 c 列的二维列联表,简称 r×c 表。若所考虑的属性多于两个,也可按类似的方式作出列联表,称为多维列联表。

列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。用于分析离散变量或定型变量之间是否存在相关。列联表分析的基本问题是,判明所考察的各属性之间有无关联,即是否独立。如在前例中,问题是:一个人是否色盲与其性别是否有关?在 r×с表中,若以 pi、pj 和 pij 分别表示总体中的个体属于等级 AI,属于等级 Bj 和同时属于 AI、Bj 的概率(pi,pj 称边缘概率,pij 称格概率),“A、B 两属性无关联”的假设可以表述为 H0:\(pij=pi \times pj,(i=1,2,……,r;j=1,2,……,с)\),未知参数 pij、pi、pj 的最大似然估计(见点估计)分别为行和及列和(统称边缘和)为样本大小。根据 K. 皮尔森(1904) 的拟合优度检验或似然比检验(见假设检验),当 h0 成立,且一切 pi>0 和 pj>0 时,统计量的渐近分布是自由度为(r-1)(с-1) 的Ⅹ分布,式中 Eij=(ni·nj)/ n 称为期望频数。当 n 足够大,且表中各格的 Eij 都不太小时,可以据此对 h0 作检验:若Ⅹ值足够大,就拒绝假设 h0,即认为 A 与 B 有关联。在前面的色觉问题中,曾按此检验,判定出性别与色觉之间存在某种关联。

  • 需要注意

若样本大小 n 不很大,则上述基于渐近分布的方法就不适用。对此,在四格表情形,R.A. 费希尔(1935) 提出了一种适用于所有 n 的精确检验法。其思想是在固定各边缘和的条件下,根据超几何分布(见概率分布),可以计算观测频数出现任意一种特定排列的条件概率。把实际出现的观测频数排列,以及比它呈现更多关联迹象的所有可能排列的条件概率都算出来并相加,若所得结果小于给定的显著性水平,则判定所考虑的两个属性存在关联,从而拒绝 h0。

对于二维表,可进行卡方检验,对于三维表,可作 Mentel-Hanszel 分层分析。列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。

5. 相关分析

研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。

  • 单相关:两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;
  • 复相关:三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;
  • 偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。

6. 方差分析

使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。分类:

  • 单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系
  • 多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
  • 多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
  • 协方差分析:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分析结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法。

7. 回归分析

  • 一元线性回归分析

只有一个自变量 X 与因变量 Y 有关,X 与 Y 都必须是连续型变量,因变量 y 或其残差必须服从正态分布。

  • 多元线性回归分析

使用条件:分析多个自变量与因变量 Y 的关系,X 与 Y 都必须是连续型变量,因变量 y 或其残差必须服从正态分布。

变呈筛选方式选择最优回归方程的变里筛选法包括全横型法(CP 法)、逐步回归法,向前引入法和向后剔除法
横型诊断方法 A 残差检验:观测值与估计值的差值要艰从正态分布 B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis 距离法 C 共线性诊断:
  • 诊断方式:容忍度、方差扩大因子法(又称膨胀系数 VIF)、特征根判定法、条件指针 CI、方差比例
  • 处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等
  • Logistic 回归分析

线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而 Logistic 回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况

  • 分类

Logistic 回归模型有条件与非条件之分,条件 Logistic 回归模型和非条件 Logistic 回归模型的区别在于参数的估计是否用到了条件概率。

  • 分享于 · 2019.11.04 08:02 · 阅读 · 3008

[版权声明] :本文系网友分享,仅以非商业性的交流和科研为目的,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网( friends@stuch.cn )联系!我们将协调给予处理。转载授权码:确权中,请原作者尽快与我们取得联系,阅读原文(请登录)..

0 条评论

请先 登录 后评论
猜猜我是谁
陈龙 -研究生

10
提问
23
回答
4
文章