PyTorch是使用GPU和CPU优化的深度学习张量库...[ 百科 ]
Pytorch是torch的python版本,是由Facebook开源的神经网络框架,专门针对 GPU 加速的深度神经网络(DNN)编程。Torch 是一个经典的对多维矩阵数据进行操作的张量(tensor )库,在机器学习和其他数学密集型应用有广泛应用。与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图。但由于Torch语言采用 Lua,导致在国内一直很小众,并逐渐被支持 Python 的 Tensorflow 抢走用户。作为经典机器学习库 Torch 的端口,PyTorch 为 Python 语言使用者提供了舒适的写代码选择。
PyTorch的设计追求最少的封装,尽量避免重复造轮子。不像 TensorFlow 中充斥着session、graph、operation、name_scope、variable、tensor、layer等全新的概念,PyTorch 的设计遵循tensor→variable(autograd)→nn.Module 三个由低到高的抽象层次,分别代表高维数组(张量)、自动求导(变量)和神经网络(层/模块),而且这三个抽象之间联系紧密,可以同时进行修改和操作。 简洁的设计带来的另外一个好处就是代码易于理解。PyTorch的源码只有TensorFlow的十分之一左右,更少的抽象、更直观的设计使得PyTorch的源码十分易于阅读。
PyTorch 的灵活性不以速度为代价,在许多评测中,PyTorch 的速度表现胜过 TensorFlow和Keras 等框架。框架的运行速度和程序员的编码水平有极大关系,但同样的算法,使用PyTorch实现的那个更有可能快过用其他框架实现的。
PyTorch 是所有的框架中面向对象设计的最优雅的一个。PyTorch的面向对象的接口设计来源于Torch,而Torch的接口设计以灵活易用而著称,Keras作者最初就是受Torch的启发才开发了Keras。PyTorch继承了Torch的衣钵,尤其是API的设计和模块的接口都与Torch高度一致。PyTorch的设计最符合人们的思维,它让用户尽可能地专注于实现自己的想法,即所思即所得,不需要考虑太多关于框架本身的束缚。
PyTorch(Caffe2) 通过混合前端,分布式训练以及工具和库生态系统实现快速,灵活的实验和高效生产。PyTorch 和 TensorFlow 具有不同计算图实现形式,TensorFlow 采用静态图机制(预定义后再使用),PyTorch采用动态图机制(运行时动态定义)。PyTorch 具有以下高级特征: