本教程是 Python 官方网站上 《Tutorial》 部分文档的翻译,本文档与 官方文档授权一致。
第二部分涵盖了专业编程所需要的更高级的模块。这些模块很少用在小脚本中。
reprlib
模块提供了一个定制化版本的 repr()
函数,用于缩略显示大型或深层嵌套的容器对象:
>>> import reprlib
>>> reprlib.repr(set('supercalifragilisticexpialidocious'))
"{'a','c','d','e','f','g', ……}"
pprint
模块提供了更加复杂的打印控制,其输出的内置对象和用户自定义对象能够被解释器直接读取。当输出结果过长而需要折行时,“美化输出机制”会添加换行符和缩进,以更清楚地展示数据结构:
>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
…… 'yellow'], 'blue']]]
……
>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],
'white',
['green', 'red']],
[['magenta', 'yellow'],
'blue']]]
textwrap
模块能够格式化文本段落,以适应给定的屏幕宽度:
>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
…… a list of strings instead of one big string with newlines to separate
…… the wrapped lines."""
……
>>> print(textwrap.fill(doc, width=40))
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.
locale
模块处理与特定地域文化相关的数据格式。locale 模块的 format 函数包含一个 grouping 属性,可直接将数字格式化为带有组分隔符的样式:
>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
'English_United States.1252'
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
'1,234,567'
>>> locale.format_string("%s%.*f", (conv['currency_symbol'],
…… conv['frac_digits'], x), grouping=True)
'$1,234,567.80'
string
模块包含一个通用的 Template
类,具有适用于最终用户的简化语法。它允许用户在不更改应用逻辑的情况下定制自己的应用。
上述格式化操作是通过占位符实现的,占位符由 $
加上合法的 Python 标识符(只能包含字母、数字和下划线)构成。一旦使用花括号将占位符括起来,就可以在后面直接跟上更多的字母和数字而无需空格分割。$$
将被转义成单个字符 $
:
>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'
如果在字典或关键字参数中未提供某个占位符的值,那么 substitute()
方法将抛出 KeyError
。对于邮件合并类型的应用,用户提供的数据有可能是不完整的,此时使用 safe_substitute()
方法更加合适 —— 如果数据缺失,它会直接将占位符原样保留。
>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
……
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'
Template 的子类可以自定义定界符。例如,以下是某个照片浏览器的批量重命名功能,采用了百分号作为日期、照片序号和照片格式的占位符:
>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
…… delimiter = '%'
>>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format):')
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f
>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
…… base, ext = os.path.splitext(filename)
…… newname = t.substitute(d=date, n=i, f=ext)
…… print('{0} --> {1}'.format(filename, newname))
img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg
模板的另一个应用是将程序逻辑与多样的格式化输出细节分离开来。这使得对 XML 文件、纯文本报表和 HTML 网络报表使用自定义模板成为可能。
struct
模块提供了 pack()
和 unpack()
函数,用于处理不定长度的二进制记录格式。下面的例子展示了在不使用 zipfile
模块的情况下,如何循环遍历一个 ZIP 文件的所有头信息。Pack 代码 "H"
和 "I"
分别代表两字节和四字节无符号整数。"<"
代表它们是标准尺寸的小尾型字节序:
import struct
with open('myfile.zip', 'rb') as f:
data = f.read()
start = 0
for i in range(3): # show the first 3 file headers
start += 14
fields = struct.unpack('<IIIHH', data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
start += 16
filename = data[start:start+filenamesize]
start += filenamesize
extra = data[start:start+extra_size]
print(filename, hex(crc32), comp_size, uncomp_size)
start += extra_size + comp_size # skip to the next header
线程是一种对于非顺序依赖的多个任务进行解耦的技术。多线程可以提高应用的响应效率,当接收用户输入的同时,保持其他任务在后台运行。一个有关的应用场景是,将 I/O 和计算运行在两个并行的线程中。
以下代码展示了高阶的 threading
模块如何在后台运行任务,且不影响主程序的继续运行:
import threading, zipfile
class AsyncZip(threading.Thread):
def __init__(self, infile, outfile):
threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile
def run(self):
f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print('Finished background zip of:', self.infile)
background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print('The main program continues to run in foreground.')
background.join() # Wait for the background task to finish
print('Main program waited until background was done.')
多线程应用面临的主要挑战是,相互协调的多个线程之间需要共享数据或其他资源。为此,threading 模块提供了多个同步操作原语,包括线程锁、事件、条件变量和信号量。
尽管这些工具非常强大,但微小的设计错误却可以导致一些难以复现的问题。因此,实现多任务协作的首选方法是将对资源的所有请求集中到一个线程中,然后使用 queue
模块向该线程供应来自其他线程的请求。应用程序使用 Queue
对象进行线程间通信和协调,更易于设计,更易读,更可靠。
[版权声明] :本文文字、代码及图片版权归原作者所有,任何媒体、网站或个人未经本网协议授权不得采集、整理、转载或以其他方式复制发表。已经本站协议授权的媒体、网站,在使用时必须注明“稿件来源:学研谷”。