核心思想是把原来在时间域及空间域上连续的物理量的场,如速度场,压力场等,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。
继而,通过离散化实现数值解法。
我们知道描述流体流动及传热等物理问题的基本方程为偏微分方程,想要得它们的解析解或者近似解析解,在绝大多数情况下都是非常困难的,甚至是不可能的,就拿我们熟知的 Navier-Stokes 方程来说,现在能得到解析的特解也就 70 个左右;但为了对这些问题进行研究,我们可以借助于我们已经相当成熟的代数方程组求解方法,因此,离散化的目的简而言之,就是将连续的偏微分方程组及其定解条件按照某种方法遵循特定的规则在计算区域的离散网格上转化为代数方程组,以得到连续的离散数值逼近解。