材料力学工程背景强,理论相对简单,学生容易接受,成为变形体力学的入门课程。不过就“力学是建立数学与工程之间的桥梁”而论,材料力学还不算力学,它仅是人们对工程问题的一种近似处理,严格的建立工程问题数学描述是从弹性力学开始的。更进一步,其研究对象也不限定为材料力学那样的细长结构,而是抛开具体的结构形式,建立一般性的工程分析理论。不过也应该明确弹性力学与材料力学具有相同的工程目标,即工程中的强度、刚度、稳定性问题。
在材料力学中学过,工程中的强度问题是通过应力或应变量来判定的,刚度通过位移量来判定,稳定性主要研究临界载荷,可认为是通过应力可解决稳定性的问题。应力、应变、位移就构成了弹性力学中的待求解量,即弹性力学方程中的未知量,弹性力学一方面要利用力学原理建立这些未知量所满足的方程,另一方面则要为这些方程提供求解方法。以徐芝纶《弹性力学(上册)》(第 5 版)为例,画出了弹性力学知识体系结构,如图 1 所示。
图 1 弹性力学的知识体系结构图
我们强调弹性力学具有和材料力学相同工程目标,即解决工程中的强度、刚度、稳定性,同时图 1 又说明弹性力学的两个任务:一是建立方程,二是求解方程,这就要求学习弹性力学不仅要具有一定的工程意识,还要具有良好的数理推导能力。然而,工程意识和数理推导如果想兼而有之并不容易。
工程的研究对象主要是看得见、摸得着的实体模型,无论说出什么概念学生都能立马想象出实际的工程模型与之对应,我们称这种思维方式为具象思维;而数理推导则恰好相反,要求能把具体的事物抽象为一般模型,并培养事物内在相关性的推理能力。这是两种互逆的思维方式,对于工程要努力把一切抽象的东西变成具体的,而数理则要努力把一切具体的变成抽象的。而人的弱点往往是习惯于某种思维时,就会自带惯性的如此思考,这样互逆的思维要同时兼备多数人会感到疲惫。
这种难度其实我们并不陌生,在教学中,我们常见做实验动手能力强的学生往往不太能坐的住去做数学推导,相反喜欢数学推导的学生往往动手能力较差,既要有很强的动手能力,又爱数学推导的学生少之又少。在科研领域,我们常会听说从事具体工程项目研究的研究生抱怨发表高水平的 SCI 论文之难,而有些能发高水平 SCI 论文的学生面对工程问题时又只能纸上谈兵,这些实际上就是对这两种思维难以兼容的表现。
[版权声明] :本文系网友分享,仅以非商业性的交流和科研为目的,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请在30日内与本网( friends@stuch.cn )联系!我们将协调给予处理。转载授权码:确权中,请原作者尽快与我们取得联系,阅读原文(请登录)..